skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Ana Paula Rocha, Luc Steels"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ana Paula Rocha, Luc Steels (Ed.)
    Many machine learning tasks have a measure of success that is naturally continuous, such as error under a loss function. We generalize the Algorithmic Search Framework (ASF), used for modeling machine learning domains as discrete search problems, to the continuous space. Moving from discrete target sets to a continuous measure of success extends the applicability of the ASF by allowing us to model fundamentally continuous notions like fuzzy membership. We generalize many results from the discrete ASF to the continuous space and prove novel results for a continuous measure of success. Additionally, we derive an upper bound for the expected performance of a search algorithm under arbitrary levels of quantization in the success measure, demonstrating a negative relationship between quantization and the performance upper bound. These results improve the fidelity of the ASF as a framework for modeling a range of machine learning and artificial intelligence tasks. 
    more » « less